Semidirect Product Decompositions of Ordered Groupoids and Inverse Semigroups

نویسنده

  • BENJAMIN STEINBERG
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered categories and ordered semigroups

We use ordered categories to study semidirect decompositions of finite ordered semigroups. We obtain ordered analogues of the derived category theorem and of the delay theorem. Next we prove that the ordered analogues of semilattices and of J -trivial monoids constitute local varieties, and we derive some decomposition theorems from these results. In [10], Pin and Weil initiated a study of the ...

متن کامل

Semidirect Products of Regular Semigroups

Within the usual semidirect product S ∗ T of regular semigroups S and T lies the set Reg (S ∗ T ) of its regular elements. Whenever S or T is completely simple, Reg (S ∗T ) is a (regular) subsemigroup. It is this ‘product’ that is the theme of the paper. It is best studied within the framework of existence (or e-) varieties of regular semigroups. Given two such classes, U and V, the e-variety U...

متن کامل

Restriction and Ehresmann Semigroups

Inverse semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, in this case a 7→ a−1. The theory of inverse semigroups is perhaps the best developed within semigroup theory, and relies on two factors: an inverse semigroup S is regular, and has semilattice of idempotents. Three major approaches to the structure of inverse semigroups have e...

متن کامل

Factorisability in certain classes over inverse semigroups

In the structure theory of inverse semigroups, there are two approaches, basically from the 1970’s, to build up inverse semigroups from semilattices and groups via their semidirect products. These approaches are dual to each other in the sense that one produces any inverse semigroup from a semidirect product of a semilattice by a group by taking an idempotent separating homomorphic image of an ...

متن کامل

A Non-commutative Generalization of Stone Duality

We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid Cn associated with the Cuntz groupoid Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn. The g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999